The groups of symmetric genus $\sigma \leq 8$

Coy L. May, Jay Zimmerman*

Abstract

Let G be a finite group. The symmetric genus $\sigma(G)$ is the minimum genus of any compact Riemann surface on which G acts. We obtain the following general results about the partial presentations that groups acting on surfaces must have.

Theorem. Let G be a group of order 2^nm, where m is odd and $\sigma(G) \geq 2$. Suppose that S is a Sylow 2-subgroup of G. Let D be a maximal order dihedral subgroup of S with $D = 1$ if S has no dihedral subgroups. Let C be a maximal order cyclic subgroup of S. If $[S : D] \geq 4$ and $[S : C] \geq 4$, then $\sigma(G)$ is odd. Furthermore, if G acts on a surface of even genus $g \geq 2$ and contains no elements of order 2^{n-1}, then a Sylow 2-subgroup of G must be isomorphic to one of three groups.

Then we classify the groups of symmetric genus σ, for all values of σ such that $4 \leq \sigma \leq 8$. This is done by proving some “refined Hurwitz theorems,” such as the following.

Theorem. Let G be a group with $\sigma(G) \geq 2$. If $\sigma(G) < 1 + |G|/8$, then G has a partial presentation (with the relations fulfilled) of type T, Q, FT, HT, FQ or HQ. Further, the Singerman subgroup condition is satisfied if G has a partial presentation of type FT, HT, FQ or HQ.

The software package MAGMA was employed to check if a specific group satisfied these partial presentations. The MAGMA library of small groups was used to identify the groups to be checked.

Towson University
jzimmerman@towson.edu