A brief survey of non-abelian tensor products of groups

Russell Blyth

Saint Louis University

Abstract: We survey work on non-abelian tensor products of groups, with an emphasis on non-abelian tensor squares, including both general structure results and methods for computing such groups.

Università di Firenze
Algebra seminar 29 May, 2019

Notation and compatible action

Notation ("driving on the left")
Notation is multiplicative
Conjugation on the left: ${ }^{b} a=b a b^{-1}$
Action of one group on another is also written on the left
Commutator: $[a, b]=a b a^{-1} b^{-1}$

Definition

Two groups G and H act compatibly on each other if

$$
\left.{ }^{(g} h\right) g^{\prime}={ }^{g}\left({ }^{h}\left(g^{-1} g^{\prime}\right)\right) \quad \text { and } \quad\left({ }^{h} g\right) h^{\prime}={ }^{h}\left(g\left(h^{-1} h^{\prime}\right)\right)
$$

for all $g, g^{\prime} \in G, h, h^{\prime} \in H$.
We always understand a group to be acting on itself by conjugation.

Definition of a non-abelian tensor product/square

Definition

Let G and H be two groups that act compatibly on each other and on themselves by conjugation. The non-abelian tensor product $G \otimes H$ is the group generated by the symbols $g \otimes h$, where $g \in G, h \in H$, subject to the relations $g g^{\prime} \otimes h=\left(g^{g} g^{\prime}{ }^{g} h\right)(g \otimes h) \quad$ and $\quad g \otimes h h^{\prime}=(g \otimes h)\left({ }^{h} g \otimes^{h} h^{\prime}\right)$ for all $g, g^{\prime} \in G$ and all $h, h^{\prime} \in H$.

Example
Given two groups G and H, acting on each other trivially, then $G \otimes H$ is the usual tensor product of the abelianizations, $G^{a b} \otimes_{\mathbb{Z}} H^{a b}$.

Definition

The group $G \otimes G$, where all actions are conjugation, is called the non-abelian tensor square of G.

Origins: Topological connection

Brown and Loday (1987) starts with:
"Let X be a pointed space and $\{A, B\}$ be an open cover of X such that A, B and $C=A \cap B$ are connected, and $(A, C),(B, C)$ are 1 -connected. One of the corollaries of the main theorem of $\S 5$ is an algebraic description of the third triad homotopy group:

$$
\pi_{3}(X ; A, B) \cong \pi_{2}(A, C) \otimes \pi_{2}(B, C)
$$

where \otimes means "non-Abelian tensor product" of the two relative homotopy groups, each acting on the other via $\pi_{1} C$."

Origins: Notable papers

Foundations:

J.H.C. Whitehead. A certain exact sequence, Ann. of Math. (2) 52 (1950), 51-110.
C. Miller. The second homology group of a group; relations among commutators, Proc. Amer. Math. Soc. 3 (1952), 588-595.
R.K. Dennis. In search of "new" homology functors having a close relationship to K-theory, Preprint, Cornell University, Ithaca, NY 1976.
First definitions:
R. Brown, J.L. Loday. Excision homotopique en basse dimension., C.R. Acad. Sci. Pars Sér. I Math 298 (1984), no. 15, 353-356.
R. Brown, J.L. Loday. Van Kampen theorems for diagram of spaces., Topology

26 (1987), no. 3, 311-335. With an appendix by M. Zisman.
As group theoretic objects:
R. Brown, D.L. Johnson, E.F. Robertson. Some computations of nonabelian tensor products of groups, J. Algebra 111 (1987), no. 1, 177-202.
R. Aboughazi. Produit tensoriel du group d'Heisenberg, Bull. Soc. Math. France 115 (1987), 95-106.
G.J. Ellis. The nonabelian tensor product of finite groups is finite, J. Algebra 111 (1987), 203-205.
D.L. Johnson. The nonabelian tensor square of a finite split metacyclic group, Proc. Edinburgh Math. Soc. 30 (1987), 91-96.

Some general identities (Brown, Loday)

The compatibility condition and the defining relations yield an action of $k \in G * H$ on $G \otimes H$, with ${ }^{k}(g \otimes h)={ }^{k} g \otimes{ }^{k} h$ for $g \in G, h \in H$.

Proposition

The following hold for all $g, g^{\prime} \in G, h, h^{\prime} \in H$:
(a) ${ }^{g}\left(g^{-1} \otimes h\right)=(g \otimes h)^{-1}={ }^{h}\left(g \otimes h^{-1}\right)$,
(b) $(g \otimes h)\left(g^{\prime} \otimes h^{\prime}\right)(g \otimes h)^{-1}=[g, h]\left(g^{\prime} \otimes h^{\prime}\right)$,
(c) $\left(g^{h} g^{-1}\right) \otimes h^{\prime}=(g \otimes h)^{h^{\prime}}(g \otimes h)^{-1}$,
(d) $g^{\prime} \otimes\left({ }^{g} h h^{-1}\right)=g^{\prime}(g \otimes h)(g \otimes h)^{-1}$,
(e) $\left[g \otimes h, g^{\prime} \otimes h^{\prime}\right]=\left(g^{h} g^{-1}\right) \otimes\left(g^{\prime} h^{\prime} h^{\prime-1}\right)$.

Crossed pairing (Brown, Loday)

Definition

Let G, H and L be groups. A function $\phi: G \times H \rightarrow L$ is called a crossed pairing if for all $g, g^{\prime} \in G$ and all $h, h^{\prime} \in H$,

$$
\begin{aligned}
& \phi\left(g g^{\prime}, h\right)=\phi\left({ }^{g} g^{\prime},{ }^{g} h\right) \phi(g, h), \\
& \phi\left(g, h h^{\prime}\right)=\phi(g, h) \phi\left({ }^{h} g,{ }^{h} h^{\prime}\right) .
\end{aligned}
$$

A crossed pairing determines a unique homomorphism of groups $\phi^{*}: G \otimes H \rightarrow L$ so that $\phi^{*}(g \otimes h)=\phi(g, h)$ for all $g \in G$ and $h \in H$.

General results (Brown, Loday)

Proposition

Suppose that G, H are groups that act compatibly on each other.
(a) Suppose that $\theta: G \rightarrow A, \phi: H \rightarrow B$ are homomorphisms of groups, that A, B also act compatibly on each other, and that θ, ϕ preserve the actions, that is,

$$
\phi\left({ }^{g} h\right)={ }^{\theta g}(\phi h) \quad \text { and } \quad \theta\left({ }^{h} g\right)={ }^{\phi h}(\theta g)
$$

for all $g \in G, h \in H$. Then there is a unique homomorphism $\theta \otimes \phi: G \otimes H \rightarrow A \otimes B$ such that $(\theta \otimes \phi)(g \otimes h)=\theta g \otimes \phi h$ for all $g \in G, h \in H$. Further, if θ, ϕ are onto, so also is $\theta \otimes \phi$.
(b) There is a unique isomorphism $\tau: G \otimes H \rightarrow H \otimes G$ such that $\tau(g \otimes h)=(h \otimes g)^{-1}$ for all $g \in G$.

General results (Brown, Loday)

Proposition

Suppose that G, H are groups that act compatibly on each other.
(a) There are homomorphisms of groups $\lambda: G \otimes H \rightarrow G$, $\lambda^{\prime}: G \otimes H \rightarrow H$ such that

$$
\lambda(g \otimes h)=g^{h} g^{-1}, \lambda^{\prime}(g \otimes h)={ }^{g} h h^{-1} .
$$

(b) The crossed module rules hold for λ and λ^{\prime}, that is,

$$
\lambda\left({ }^{g} t\right)=g(\lambda(t)) g^{-1} \quad \text { and } \quad t t_{1} t^{-1}={ }^{\lambda(t)} t_{1}
$$

hold for all $t, t_{1} \in G \otimes H, g \in G$ (and similarly for λ^{\prime}).
(c) $\lambda(t) \otimes h=t^{h} t^{-1}, g \otimes \lambda^{\prime} t=g^{g} t t^{-1}$, and thus $\lambda(t) \otimes \lambda^{\prime}\left(t_{1}\right)=\left[t, t_{1}\right]$ for all $t, t_{1} \in G \otimes H, g \in G, h \in H$. Hence G acts trivially on $\operatorname{ker} \lambda^{\prime}$ and H acts trivially on $\operatorname{ker} \lambda$.

Non-abelian tensor square: commutator map

Now consider the non-abelian tensor square $G \otimes G$.

The commutator map [,]: $G \times G \rightarrow G$ (a crossed pairing) induces a homomorphism of groups $\kappa: G \otimes G \rightarrow G$, such that $\kappa(g \otimes h)=[g, h]$.

We write $J_{2}(G)$ for $\operatorname{ker} \kappa$.
If G is perfect then $\kappa: G \otimes G \rightarrow G$ is the universal central extension of G.

Non-abelian exterior square

Let $\nabla(G)=\langle g \otimes g \mid g \in G\rangle \leq G \otimes G$.
In fact, $\nabla(G) \leq Z(G \otimes G)$.

Definition
The non-abelian exterior square $G \wedge G$ of the group G is the factor group $G \otimes G / \nabla(G)$. The image of a simple tensor $g \otimes g^{\prime}$ is written $g \wedge g^{\prime}$.

Let $\kappa^{\prime}: G \wedge G \longrightarrow G^{\prime}$ be the map induced by κ.
The kernel of κ^{\prime} is the Schur multiplier $\mathrm{H}_{2}(\mathrm{G})$ (Miller).

Commutative diagram

(based on Brown and Loday $(1984,1987)$)

where all the sequences are exact and the short exact sequences are central. $\Gamma\left(G^{\mathrm{ab}}\right)$ is Whitehead's universal quadratic functor.

Whitehead's universal quadratic functor

Let A be an abelian group. Define $\Gamma(A)$ to be the abelian group with generating set $\{\gamma a \mid a \in A\}$ and additional relations

$$
\begin{gathered}
\gamma\left(a^{-1}\right)=\gamma a, \text { for } a \in A \text { and } \\
\gamma(a b c) \gamma a \gamma b \gamma c=\gamma(a b) \gamma(b c) \gamma(c a), \text { for } a, b, c \in A .
\end{gathered}
$$

Proposition

(a) $\Gamma(A \times B) \cong \Gamma A \times \Gamma B \times(A \otimes B)$
(b) $\Gamma \mathbb{Z}_{n} \cong\left\{\begin{array}{ll}\mathbb{Z}_{n} & \text { for } n \text { odd } \\ \mathbb{Z}_{2 n} & \text { for } n \text { even }\end{array} \quad\left(\right.\right.$ where $\mathbb{Z}_{0}=\mathbb{Z}$)

Thus $\Gamma(A)$ is easily computed for A finitely generated.
$\psi: \Gamma\left(G^{\mathrm{ab}}\right) \rightarrow J_{2}(G) \leq G \otimes G$ is given by $\psi\left(\gamma g G^{\prime}\right)=g \otimes g$.

Consequences of the commutative diagram

Proposition (Brown and Loday; also Ellis (1987))
(a) If G is a finite group, then so is $G \otimes G$.
(b) If G is a finite p-group, then so is $G \otimes G$.

Proof of (a): For G finite, both $H_{2}(G)$ and $\Gamma\left(G^{\mathrm{ab}}\right)$ are finite, hence so is $J_{2}(G)$. Thus $G \otimes G$ is finite.

Proposition (Brown and Loday)
If G is a free group, then $G \otimes G \cong G^{\prime} \times \Gamma\left(G^{\mathrm{ab}}\right)$.
If G is free of finite rank $n \geq 2$, then G^{\prime} is free of countably infinite rank and $\Gamma\left(G^{\text {ab }}\right)$ is free abelian of rank $\frac{n(n+1)}{2}$.

Consequences of the commutative diagram: perfect groups

Proposition

Let G be any group and let

$$
1 \longrightarrow A \xrightarrow{\iota} K \xrightarrow{\pi} G \longrightarrow 1,
$$

be a central extension. Then there is a homomorphism $\xi: G \otimes G \rightarrow K$ such that $\pi \xi$ is the commutator map κ.
If G is perfect, then ξ is unique.
Definition
A covering group \hat{G} of a group G is a central extension

$$
1 \longrightarrow H_{2}(G) \xrightarrow{\iota} \hat{G} \longrightarrow G \longrightarrow 1
$$

where $\operatorname{Im} \iota \subseteq \hat{\mathrm{G}}^{\prime}$.

Proposition ("Corollary 1" of Brown, Johnson and Robertson)
When G is a perfect group, $G \otimes G$ is the (unique) covering group \hat{G} of G.

Consequences of the commutative diagram

Proposition ("Corollary 2" of Brown, Johnson and Robertson) If \hat{G} is a covering group of G, then there is a map $\eta: G \wedge G \rightarrow \hat{G}^{\prime}$, which is an isomorphism if $\mathrm{H}_{2}(G)$ is finitely generated.

Proposition

If G is a group in which G^{\prime} has a cyclic complement C, then $G \otimes G \cong(G \wedge G) \times C$.

Computing non-abelian tensor squares

Using the definition

Brown, Johnson and Robertson's approach to computing a non-abelian tensor square for a finite group G : form the finite presentation given in the definition and to use software to perform Tietze transformations to simplify the presentation. Examine this simplified presentation to determine the isomorphism type of $G \otimes G$.

They applied this technique to all non-abelian groups of order up to 48, and classified the non-abelian tensor squares of several general types of groups.

Computing non-abelian tensor squares

Using the definition

Example: $G=A_{4}=\left\langle a, b \mid a^{3}=b^{2}=(a b)^{3}=1\right\rangle$.
$G \otimes G$ has 144 generators:

$$
a \otimes a, a \otimes a^{2}, a \otimes b, a \otimes a b, \ldots, a^{2} b \otimes a b, \ldots
$$

and 3456 relations
$a^{2} \otimes b=\left({ }^{a} a \otimes{ }^{a} b\right)(a \otimes b), \ldots, a b \otimes a b=(a b \otimes a)\left({ }^{a} a b \otimes{ }^{a} b\right), \ldots$.
Using Tietze transformations and coset enumeration, determine
$G \otimes G \cong\left\langle x_{1}, x_{2}, x_{3} \mid x_{1}^{3}=\left[x_{1}, x_{2}\right]=\left[x_{1}, x_{3}\right]=1, x_{2}^{2}=x_{3}^{2}, x_{2} x_{3} x_{2}=x_{3}\right\rangle$

$$
\cong \mathbb{Z}_{3} \times Q_{2}
$$

where $x_{1}=a \otimes a, x_{2}=a \otimes b, x_{3}=a \otimes a^{-1} b a$.
This method becomes impractical for large finite groups since one starts with $|G|^{2}$ generators and $2|G|^{3}$ relations.

Computing non-abelian tensor squares

Using the definition

Proposition

Let Q_{m} be the quartionic group of order $4 m$ (with presentation $\left\langle x, y \mid y^{m}=x^{2}, x y x^{-1}=y^{-1}\right\rangle$). Then

$$
Q_{m} \otimes Q_{m} \cong\left\{\begin{array}{cc}
\mathbb{Z}_{4} \times \mathbb{Z}_{m} & \text { for } m \text { odd } \\
\mathbb{Z}_{2} \times \mathbb{Z}_{2 m} \times \mathbb{Z}_{2+k} \times \mathbb{Z}_{2} & \text { for } m=4 r+k, k \in\{0,2\}
\end{array}\right.
$$

Proposition (also see Aboughazi)
Let D_{m} be the dihedral group of order $2 m$ (with presentation $\left\langle x, y \mid y^{m}=1, x y x^{-1}=y^{-1}\right\rangle$). Then

$$
D_{m} \otimes D_{m} \cong\left\{\begin{array}{cc}
\mathbb{Z}_{2} \times \mathbb{Z}_{m} & \text { for } m \text { odd } \\
\mathbb{Z}_{2} \times \mathbb{Z}_{m} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} & \text { for } m \text { even }
\end{array}\right.
$$

Computing non-abelian tensor squares

Using crossed pairings

Recall: A crossed pairing $\phi: G \times H \rightarrow L$ determines a unique homomorphism of groups $\phi^{*}: G \otimes H \rightarrow L$ so that $\phi^{*}(g \otimes h)=\phi(g, h)$ for all $g \in G$ and $h \in H$.

Method: Conjecture a group L for $G \otimes G$, as well as a map $\phi: G \times G \rightarrow L$. Show that ϕ is a crossed pairing and that the induced map ϕ^{*} is an isomorphism.

Computing non-abelian tensor squares

Crossed pairings: sample result

Theorem (Bacon, Kappe and Morse (1997); B, Morse and Redden (2004))
(a) The non-abelian tensor square of the free 2-Engel group of rank 2 is free abelian of rank 6.
(b) The non-abelian tensor square of the free 2-Engel group of rank $n>2$ is a direct product of a free abelian group of rank $\frac{1}{3} n\left(n^{2}+2\right)$ and an $n(n-1)$-generated nilpotent group of class 2 whose derived subgroup has exponent 3.

The proofs involve very detailed computer-assisted calculations, sufficient to dissuade attempting to use crossed pairings to investigate non-abelian tensor squares of (e.g.) finite rank free nilpotent groups of class 3 .

Computing non-abelian tensor squares

The group $\nu(G)$

$$
\begin{aligned}
& \text { Definition (Ellis and Leonard (1995), Rocco (1991)) } \\
& \text { Let } G \text { be a group with presentation }\langle\mathcal{G} \mid \mathcal{R}\rangle \text { and let } G^{\varphi} \text { be an } \\
& \text { isomorphic copy of } G \text { via the mapping } \varphi: g \rightarrow g^{\varphi} \text { for all } g \in G \text {. } \\
& \text { Define the group } \nu(G) \text { to be } \\
& \nu(G)=\left\langle\mathcal{G}, \mathcal{G}^{\varphi} \mid \mathcal{R}, \mathcal{R}^{\varphi},{ }^{\times}\left[g, h^{\varphi}\right]=\left[{ }^{x} g,\left({ }^{x} h\right)^{\varphi}\right]={ }^{x^{\varphi}}\left[g, h^{\varphi}\right], \forall x, g, h \in G\right\rangle .
\end{aligned}
$$

The groups G and G^{φ} embed isomorphically into $\nu(G)$. By convention the labels G and G^{φ} also denote their natural isomorphic copies in $\nu(G)$.

Computing non-abelian tensor squares

The group $\nu(G)$

Theorem (Ellis and Leonard (1995), Rocco (1991))

Let G be a group. The map

$$
\phi: G \otimes G \rightarrow\left[G, G^{\varphi}\right] \triangleleft \nu(G)
$$

defined by $\phi(g \otimes h)=\left[g, h^{\varphi}\right]$ for all g and h in G is an isomorphism.

Note that $\nu(G)$ has $2|\mathcal{G}|$ generators, a significant reduction from the number of generators of $G \otimes G$. Ellis and Leonard show that the number of relations for $\nu(G)$ can be pruned to a degree that depends on the size and structure of the center of G.

Strategy: compute a small finite presentation for $\nu(G)$ and use it to determine its subgroup [G, G^{φ}].

Computing non-abelian tensor squares

Properties of $\nu(G)$

Theorem (Rocco (1991))
Let G be a group.
(a) If G is finite then $\nu(G)$ is finite.
(b) If G is a finite p-group then $\nu(G)$ is a finite p-group.
(c) If G is nilpotent of class c then $\nu(G)$ is nilpotent of class at most $c+1$.
(d) If G is solvable of derived length d then $\nu(G)$ is solvable of derived length at most $d+1$.
(e) Let $\iota:\left[G, G^{\varphi}\right] \rightarrow \nu(G)$ be the natural inclusion map and let $\xi: \nu(G) \rightarrow G \times G$ be the homomorphic extension of the map sending the generator $g \in G$ of $\nu(G)$ to ($g, 1$) and the generator $\mathrm{g}^{\varphi} \in \mathrm{G}^{\varphi}$ of $\nu(G)$ to $(1, g)$. Then

$$
1 \longrightarrow\left[G, G^{\varphi}\right] \xrightarrow{\iota} \nu(G) \xrightarrow{\xi} G \times G \longrightarrow 1
$$

is a short exact sequence.

Properties of $\nu(G)$

Lemma (Rocco; B, Moravec, Morse)
Let G be a group. The following relations hold in $\nu(G)$:
(a) ${ }^{\left[g_{3}, g_{4}^{\varphi}\right]}\left[g_{1}, g_{2}^{\varphi}\right]=\left[g_{3}, g_{4}\right]\left[g_{1}, g_{2}^{\varphi}\right]$ and $\left[g_{3}^{\varphi}, g_{4}\right]\left[g_{1}, g_{2}^{\varphi}\right]=$ ${ }^{\left[g_{3}, g_{4}\right]}\left[g_{1}, g_{2}^{\varphi}\right]$ for all $g_{1}, g_{2}, g_{3}, g_{4}$ in G;
(b) $\left[g_{1}^{\varphi}, g_{2}, g_{3}\right]=\left[g_{1}, g_{2}, g_{3}^{\varphi}\right]=\left[g_{1}^{\varphi}, g_{2}, g_{3}^{\varphi}\right]=\left[g_{1}, g_{2}^{\varphi}, g_{3}\right]=$ $\left[g_{1}^{\varphi}, g_{2}^{\varphi}, g_{3}\right]=\left[g_{1}, g_{2}^{\varphi}, g_{3}^{\varphi}\right]$ for all g_{1}, g_{2}, g_{3} in G;
(c) $\left[g_{1},\left[g_{2}, g_{3}\right]^{\varphi}\right]=\left[g_{2}, g_{3}, g_{1}^{\varphi}\right]^{-1}$;
(d) $\left[g, g^{\varphi}\right]$ is central in $\nu(G)$ for all g in G;
(e) $\left[g_{1}, g_{2}^{\varphi}\right]\left[g_{2}, g_{1}^{\varphi}\right]$ is central in $\nu(G)$ for all g_{1}, g_{2} in G;
(f) $\left[g, g^{\varphi}\right]=1$ for all g in G^{\prime}.

Computing $G \otimes G$ by method of Ellis and Leonard

Finite groups

Theorem (Ellis and Leonard)
Let G be a group.
(a) $\nu(G)$ is isomorphic to $((G \otimes G) \rtimes G) \rtimes G$.
(b) Let \widetilde{G} (respectively, $\widetilde{G^{\varphi}}$) denote the normal closure of G (respectively, G^{φ}) in $\nu(G)$. Then

$$
G \otimes G \cong \widetilde{G} \cap \widetilde{G^{\varphi}}
$$

For G a finite p-group, use the nilpotent quotient algorithm to compute $\nu(G)$, otherwise use coset enumeration. Then compute the subgroup $\widetilde{G} \cap \widetilde{G^{\varphi}}$.

$G \otimes G$ for group G of order 4096

Ellis and Leonard computed, for example, $G \otimes G$ for G the Burnside group of exponent 4 and rank 2, a group of order 4096, by applying a p-quotient algorithm to find a power-conjugate presentation of $\nu(G)$, from which the subgroup [G, G^{φ}] can be obtained.
$G \otimes G$ has order 2^{22} and is the extension of G^{\prime} by the abelian group $\left(\mathbb{Z}_{4}\right)^{4} \times\left(\mathbb{Z}_{2}\right)^{6}$.
(The computation took 61 seconds of CPU time using CAYLEY.)

Computing non-abelian tensor squares

Polycyclic groups

Definition

A group G is polycyclic if it has a subnormal series

$$
1=G_{0} \triangleleft G_{1} \triangleleft \ldots \triangleleft G_{n-1} \triangleleft G_{n}=G
$$

with cyclic factors G_{i} / G_{i-1} for $i=1, \ldots, n$.

Definition

A polycyclic generating sequence for a polycyclic group G is a sequence $\mathfrak{G}=\left(g_{1}, g_{2}, \ldots, g_{n}\right)$ such that $G_{i}=\left\langle G_{i-1}, g_{i}\right\rangle$ for $i=1, \ldots, n$.

Computing non-abelian tensor squares

Polycyclic groups

Theorem (B and Morse (2009))

Let G be a polycyclic group with a finite presentation $\langle\mathcal{G} \mid \mathcal{R}\rangle$ and polycyclic generating sequence \mathfrak{G}. Then
(a) The groups $G \otimes G$ and $\nu(G)$ are polycyclic.
(b) The group $\nu(G)$ has a finite presentation that depends only on \mathcal{G}, \mathcal{R} and \mathfrak{G}.
(c) The non-abelian tensor square $G \otimes G$ is generated by the set

$$
\left\{\mathfrak{g}^{ \pm 1} \otimes \mathfrak{h}^{ \pm 1} \mid \text { for all } \mathfrak{g}, \mathfrak{h} \text { in } \mathfrak{G}\right\} .
$$

These results support hand and computer calculations, for example, using a polycyclic quotient algorithm.

Computing non-abelian tensor squares

Non-abelian tensor squares of free nilpotent groups

Theorem
Let $\mathcal{N}_{n, c}$ denote the free nilpotent group of class c and rank $n>1$, and denote the free abelian group of rank n by $F_{n}^{a b}$.
(a) (Bacon (1994)) For $c=2, \mathcal{N}_{n, 2} \otimes \mathcal{N}_{n, 2} \cong F_{f(n)}^{\mathrm{ab}}$, where

$$
f(n)=\frac{n\left(n^{2}+2 n-1\right)}{3}
$$

(b) (B and Morse (2008)) For $c=3, \mathcal{N}_{n, 3} \otimes \mathcal{N}_{n, 3}$ is the direct product of W_{n} and $F_{h(n)}^{\mathrm{ab}}$, where W_{n} is nilpotent of class 2, minimally generated by $n(n-1)$ elements, and

$$
h(n)=\frac{n\left(3 n^{3}+14 n^{2}-3 n+10\right)}{24}
$$

Structure of non-abelian tensor square

Commutative diagram revisited

It turns out that the middle row splits under fairly general conditions.

Structure of non-abelian tensor square

Lemma

The following technical lemma, an improvement of Proposition 3.3 of Rocco (1994), shows that the structure of $\nabla(G)$ depends on G^{ab}.

Lemma (B, Fumagalli and Morigi)
Let G be a group such that G^{ab} is finitely generated. Assume that $G^{\text {ab }}$ is the direct product of the cyclic groups $\left\langle x_{i} G^{\prime}\right\rangle$, for $i=1, \ldots, s$ and set $E(G)$ to be $\left\langle\left[x_{i}, x_{j}^{\varphi}\right] \mid i<j\right\rangle\left[G^{\prime}, G^{\varphi}\right]$. Then the following hold.
(a) $\nabla(G)$ is generated by the elements of the set

$$
\left\{\left[x_{i}, x_{i}^{\varphi}\right],\left[x_{i}, x_{j}^{\varphi}\right]\left[x_{j}, x_{i}^{\varphi}\right] \mid 1 \leq i<j \leq s\right\} .
$$

(b) $\left[G, G^{\varphi}\right]=\nabla(G) E(G)$.

Structure of non-abelian tensor square

Splitting Theorem

Theorem (B, Fumagalli and Morigi)
Assume that $G^{\text {ab }}$ is finitely generated. Then the following hold.
(a) The restriction $\left.f\right|_{\nabla(G)}: \nabla(G) \longrightarrow \nabla\left(G^{\mathrm{ab}}\right)$ of the projection $f: G \longrightarrow G^{\text {ab }}$ onto $G^{\text {ab }}$ has kernel $N=E(G) \cap \nabla(G)$.
Moreover, N is a central elementary abelian 2-subgroup of [G, G^{φ}] of rank at most the 2-rank of G^{ab}.
(b) $\left[G, G^{\varphi}\right] / N \simeq \nabla\left(G^{\mathrm{ab}}\right) \times(G \wedge G)$.
(c) Suppose either that $G^{\text {ab }}$ has no elements of order two or that G^{\prime} has a complement in G. Then $\nabla(G) \cong \nabla\left(G^{\mathrm{ab}}\right)$ and $G \otimes G \cong \nabla(G) \times(G \wedge G)$.

Structure of non-abelian tensor square

Consequences of Splitting Theorem

Corollary

Let G be a group such that $G^{a b}$ is a finitely generated group with no elements of order 2. Then $J(G) \cong \Gamma\left(G^{\mathrm{ab}}\right) \times H_{2}(G)$.

Corollary (B, Moravec and Morse (2008))

Let $G=\mathcal{N}_{n, c}$ be the free nilpotent group of class c and rank $n>1$. Then $J(G) \cong \Gamma\left(G^{\mathrm{ab}}\right) \times H_{2}(G)$ is free abelian of rank $\binom{n+1}{2}+M(n, c+1)$, where $M(n, c)$ denotes the number of basic commutators in n symbols of weight c.

Structure of non-abelian tensor square

Recall that if the Schur multiplier $H_{2}(G)$ of G is finitely generated, then $G \wedge G$ is isomorphic to the derived subgroup of any covering group \hat{G} of G.

If G is the free nilpotent group $\mathcal{N}_{n, c}$, then $\hat{G} \cong \mathcal{N}_{n, c+1}$, so that $G \wedge G \cong \mathcal{N}_{n, c+1}^{\prime}$. We recover:
Theorem (B, Moravec and Morse (2008))
Let $G=\mathcal{N}_{n, c}$ be the free nilpotent group of class c and rank $n>1$. Then

$$
G \otimes G \cong \nabla(G) \times(G \wedge G) \cong F_{\binom{n+1}{2}}^{\mathrm{ab}} \times \mathcal{N}_{n, c+1}^{\prime}
$$

The structure of the derived subgroup $\mathcal{N}_{n, c+1}^{\prime}$ is further examined in B, Moravec and Morse (2008a), resulting in a more refined description of $\mathcal{N}_{n, c} \otimes \mathcal{N}_{n, c}$.

Structure of non-abelian tensor square

Exterior square theorem

The proof of the main result of Miller (1952) can be generalized to show:

Theorem (B, Fumagalli and Morigi)
Let G be a group and let F be a free group such that $G \cong F / R$ for some normal subgroup R of F. Then $G \wedge G \cong F^{\prime} /[F, R]$.

The earlier results of Brown, Johnson and Robertson (1987) on the non-abelian tensor squares of free groups of finite rank also follow directly from the splitting and exterior square theorems. We also obtain a result for free soluble groups.

Structure of non-abelian tensor square

Non-abelian tensor squares of free soluble groups

Corollary (B, Fumagalli and Morigi)
Let F be the free group of finite rank $n>1$, let d be a natural number, and let $G=F / F^{(d)}$ be the free solvable group $\mathcal{S}_{n, d}$ of derived length d and rank $n>1$. Then

$$
G \otimes G \cong \mathbb{Z}^{n(n+1) / 2} \times F^{\prime} /\left[F, F^{(d)}\right]
$$

is an extension of a nilpotent group of class ≤ 3 by a free solvable group of derived length $d-2$ and infinite rank. In particular, if $d=2$, then $G \otimes G$ is a nilpotent group.

Further results

Theorem (Ellis and McDermott (1998))
Let G be a finite group of order p^{n} (for p prime) and let d be the minimum number of generators of G. Then $p^{d^{2}} \leq|G \otimes G| \leq p^{\text {nd }}$.

Jarafi (2016) improves the upper bound to $p^{(n-1) d+2}$.
Theorem (Bastos and Rocco (2016))
Let G be a finite-by-nilpotent group. Then $G \otimes G$ is finite-by-nilpotent and $\nu(G)$ is nilpotent-by-finite.

Theorem (Bastos, Nakaoka and Rocco (2018))
Let G, H be groups acting compatibly on each other such that the set of simple tensors $g \otimes h$ is finite. Then $G \otimes H$ is finite.

Further results

Bastos, Rocco (2017, 2 papers) discuss non-abelian tensor squares/products for residually finite groups satisfying certain identities.

Bardakov, Lavrenov, Neshchadim (2019) give an example of a linear group with non-abelian tensor square not linear, and conditions for the linearity of non-abelian tensor products. Application to some one relator groups and some knot groups.

Ellis(1991), Niroomand (2012): study non-abelian tensor products in Lie algebras.

Thank you

The End!

